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1 Introduction

Sequence alignment is one of the core problems of bioinformatics, with a broad range of applications

such as genome assembly, gene identification, and phylogenetic analysis [1]. Alignments between DNA se-

quences are used to infer evolutionary or functional relationships between genes. Evolution occurs through

DNA mutations, which include small-scale edits and larger-scale rearrangement events. Traditional se-

quence alignment algorithms, such as the Needleman-Wunsch global alignment [2] and Smith-Waterman

local alignment [3] algorithms, and their heuristic-based successors, are not capable of accounting for re-

arrangements in their scoring metric, and are not suitable for inferring the evolutionary history of aligned

sequences. With the advent of whole genome sequencing and the exponential increase in the amount of

available sequence data, the need for algorithms capable of inferring homologies across entire genomes has

become more acute. In the past decade, several alignment algorithms have been developed to account for

chromosomal rearrangements. This paper provides a critical overview of these algorithms, with a focus

on their treatment of rearrangements. The advantages and limitations of these algorithms are explored,

along with a discussion of potential future developments in the problem of handling rearrangements.

2 Mutations in the Genome

The process of evolution is shaped by DNA mutations, which occur primarily during the process of

replication. The most common mutations are small-scale substitutions, insertions, and deletions, which

involve one or several base pairs. Larger-scale rearrangements of genomic subsequences also occur.

Historically, sequence alignment algorithms have focused on the small-scale events, by maximizing

scoring functions that include bonuses for aligning nucleotides and penalties for substitutions and gaps.

Global and local alignment methods are therefore well-suited for analyzing small-scale mutations and

aligning regions containing only these types of mutations. Very large mutations are also readily identifi-

able; large-scale rearrangements of greater than 1 megabase in length can be detected by chromosomal

mapping techniques such as fluorescence in situ hybridization (FISH) [4]. It is the intermediate class of

local rearrangements, ranging from a few hundred to a few hundred thousand bases, that is of particular

interest to sequence alignment [17,18], and for which the question of how best to compute and evaluate

alignments remains the most open.
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Mutations in the genome can be characterized as follows:

• Point mutations (or substitutions) are mutations in which one base pair is substituted for an-

other. These are the most common mutation events, and are responsible for the single nucleotide

polymorphisms (SNPs) that have been studied extensively in the literature.

• Insertions are mutations in which novel DNA sequence is added to the sequence. Insertions typically

involve a few base pairs; larger insertions are due to duplication events.

• Deletions are mutations in which a section of DNA is removed from the sequence. The length of

the removed sequence can range from a few bases to many megabases.

• Duplications are mutations in which a section of DNA is copied and inserted elsewhere in the DNA.

They are critical for the development of paralogous genes.

• Inversions are mutations in which a section of DNA is removed from the sequence and re-inserted

in the same location, but in the opposite orientation.

• Translocations are mutations in which a section of DNA is removed from the sequence and inserted

in a different location in the same orientation.

Figure 1: Diagram of rearrangements, from left to right: point mutation, insertion, deletion, duplication,
inversion, and translocation. Mutations are in the first sequence (horizontal direction). Blue lines indicate
areas of homology with the second sequence (vertical direction).

A few other mutation events exist, but they are either on too large a scale to be relevant to sequence

alignment (e.g. nondisjunction events), or they can be expressed as a combination of the above mutations

(e.g. a translocated inversion). Therefore, an algorithm that is able to accurately model these six

mutation types will be able to infer likely homology and align sequenced genomes. It should be noted

that these mutations are not evenly distributed throughout the genome [17]; certain areas (about 5% of

the genome) comprise mutation ”hotspots” and show higher frequencies of rearrangement. Conversely,

functional regions that are highly conserved will show much fewer rearrangements due to negative selective

pressure.

3 Sequence Alignment

An alignment between two sequences is a mapping from the nucleotides of one sequence to those

of another. An alignment can be thought to represent one of two ideas: a mapping based on the

evolutionary history of the two sequences, in which aligning bases are derived from some inferred ancestral
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sequence, or a mapping based on functional relationships between genomic regions, in which aligned

bases have common functionality in the organism [1]. In the case of whole genome alignment, in which

rearrangements are present, the goal of alignment is typically to detect homologous regions based on

common ancestry, so this review will consider alignments as such.

3.1 Early Approaches

This section provides a brief overview of early approaches to alignment and homology detection; these

methods are not, by themselves, currently used to align sequences containing rearrangements, but they

are often incorporated into more complex algorithms that are.

3.1.1 Global Alignment

The earliest approach to alignment is global alignment, which seeks to find the optimal transformation

from one sequence to another by some combination of nucleotide substitutions, insertions, and deletions.

The quality of an alignment is determined by a scoring function, which assigns a score to every aligning

pair of nucleotides, and a penalty for gaps in the alignment.

Global alignment requires that alignments be increasing in both strands; in other words, if the strands

are laid on top of each other and aligning bases are connected with lines, then the lines cannot cross.

This means that there is no way of recognizing duplications, inversions, or translocations; a duplication

in one strand would be interpreted as deletions in the other, an inversion would be scored as a sequence

of substitutions, and a translocation would appear as a deletion in each strand.

The Needleman-Wunsch algorithm [2] uses dynamic programming to compute the optimal alignment

in polynomial time; this is not computationally feasible for long sequences, so heuristic-based alternatives,

which sacrifice optimality in order to gain speed, are more commonly used. Some popular global alignment

algorithms include Dialign [5], Avid [6], and LAGAN [7]. Because global alignment is capable of handling

the nucleotide-scale mutations (point mutations, insertions, and small deletions), it is often used to align

smaller sequences considered to be orthologous by later algorithms that handle rearrangements.

3.1.2 Local Alignment

Local alignment is an extension of global alignment that removes the constraint that the mapping must

occur for the entire length of the strands; instead, local alignment will detect subsequences within the

input sequences that align to each other. This allows for detection of rearrangements, as local alignment

will return a set of hits corresponding to homologous regions within the aligned sequences.

However, local alignment cannot explain how the two sequences evolved from a common ancestral

sequence [1]. Furthermore, the hits returned by local alignment may be subsequences of larger syntenic

(without rearrangements) blocks, which need to be detected to infer homology. Also, since the scoring

system is unchanged from the original Needleman-Wunsch formulation, there is no inherent capacity for

rearrangements, so the score of an alignment is not always proportional to its evolutionary likelihood.

It is often difficult to set the score threshold for significance, as high thresholds will miss homologous

regions and low thresholds will return spurious similarities. Nevertheless, local alignment is a critical

component in the algorithms used to handle rearrangements, which assemble locally aligned regions into

larger alignments.
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The Smith-Waterman algorithm [3] extends Needleman-Wunsch to compute optimal local alignments.

As with global alignment, the dynamic programming approach is not tractable for large sequences, so

heuristic-based aligners, which typically speed up alignment by searching for matching k-mers within

the strings, are used in practice. Some popular local alignment algorithms include BLASTZ (and its

successor LASTZ) [8], PatternHunter [9], and CHAOS [10].

3.1.3 Extensions of the Scoring Scheme

There have been a few efforts to extend the scoring scheme of the Needleman-Wunsch algorithm to

include rearrangement events:

• The DSI scoring model [11] extends the scoring system of local alignment in order to handle tandem

duplications (duplications in which the two copies are next to each other); with this extension, the

running time of the dynamic programming solution increases to O(n4), so heuristic algorithms

must be used. While this model allows for duplication events, there is no capacity for inversions,

translocations, or non-tandem duplications. Consequently, this algorithm has seen little use.

• Another extension of the Smith-Waterman algorithm has been made to account for non-overlapping

inversions [12]. This approach includes a fixed cost for adding an inversion and allows for separate

match matrices and gap penalties for the inverted and non-inverted cases. As with the previous

algorithm, finding the optimal solution is not tractable, and so heuristic-based methods (evaluating

only a set of the most likely inversions in this case) are needed. Because the algorithm allows

for different parameters for inverted strings, there is some flexibility in tuning the algorithm’s

performance to detect inversions. However, the algorithm cannot represent overlapping inversions

or other rearrangements.

3.1.4 Limitations in Homology Inference

Even if we restrict ourselves to regions that do not contain rearrangements, there is uncertainty

in inferring homologies between the sequences, which will lead to alignment errors. Lunter et al. [16]

identifies three sources of uncertainty in alignments: The first is ”gap wander”, in which natural mutations

introduce spurious local similarities between sequences, which compete with and cannot be distinguished

from actual homologies, causing gaps to be assigned to incorrect positions. The second is ”gap attraction”,

when two indels are very close to each other, and the alignment algorithm prefers one larger gap instead

of two smaller gaps (due to fixed penalties for opening gaps). The third is ”gap annihilation”, in which

both sequences have a gap of the same size (i.e. an indel in each sequence), but the algorithm aligns

the sequences without gaps, avoiding the gap penalty. It is important to note these issues with local

alignment, because later algorithms will build upon these alignment blocks in producing homology maps.

3.1.5 Synteny Mapping Algorithms

One of the drawbacks of local alignment is its inability to explain ancestral relationships of aligned

sequences. To rectify this, a new class of mapping algorithms was developed, based on the idea of

constructing a set of local alignments and then grouping together alignment blocks to find regions of

synteny (orthologous regions that can be converted to each other by a sequence of rearrangements) [1].

Some examples of this approach include:
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• Waterston et al. [13] used PatternHunter to generate local alignments greater than some size. These

alignments, called anchors, were grouped into syntenic segments when they occurred on the same

chromosome and in the same orientation. These were then grouped into larger syntenic blocks [1].

• GRIMM [14] arranged its anchor segments in a graph, with edges connecting anchors whose distance

was smaller than some pre-specified threshold. The connected components of this graph were

identified as syntenic regions [1].

• Couronne et al. [15] combined local and global alignment by performing a local alignment using

BLAT, taking the top-scoring hits, consolidating nearby hits into regions, and performing global

alignment on these regions.

The principal disadvantage to these approaches is that their resolution of rearrangements is insuffi-

cient; these algorithms are able to detect larger-scale rearrangements, but smaller (e.g. a few hundred

bases) rearrangements are either contained in local alignment blocks (and therefore not scored as rear-

rangements), or not aligned in the final output. The concept of building a homology map by combining

local alignment blocks, however, is a very useful one, and further refinements to this approach have been

more successful in identifying rearrangements.

3.2 Chains and Nets

Perhaps the most commonly used system for handling rearrangements is the chains and nets of the

UCSC genome browser [17]. The critical insight behind chains/nets is that local alignment blocks can

be stitched together in order to form a global mapping, and that assembling ”chains” of local alignments

will result in a mapping that allows for local rearrangements.

In brief, the algorithm works by using BLASTZ to construct local alignment blocks. These blocks

are assembled into structures called chains, which are then assembled into a net, which defines the

mapping between homologies in the two species. In this way, the nucleotide-level mutations are handled

by BLASTZ, and the rearrangements are handled by the chaining and netting procedure.

A chain is defined as a collection of local alignment blocks, such that none of the blocks are overlapping,

all of the blocks are in the same direction, and the ordering of blocks within the chain is consistent

with the ordering of the genome sequence of both species. Therefore, a chain might represent non-

contiguous sections of DNA that could have been derived from a common ancestral sequence without

any rearrangement.

The program for constructing chains, called AXTCHAIN, uses a k-dimensional tree to efficiently

compute maximal chains - that is, by adding alignment blocks to the longest subchains they are consistent

with. Scoring parameters are included for gap penalties in between the local alignment blocks.

Once the chains have been computed, they are assembled into a net using a greedy procedure. First,

the list of chains is sorted by score and the highest scoring chain is added to the net. Then, each remaining

chain (in order of decreasing score) is used to try to fill in the gaps of the net. Low-scoring chains that

are made redundant by higher-scoring chains are thrown out, duplications (multiple chains covering the

same bases) are noted, and the net is returned.

Chains and nets are a powerful tool for alignment, and have several advantages over other algorithms.

First, the greedy assembly of the net has the advantages of being fast (as it is heuristic-based) and also

of being able to filter out many of the spurious local alignment blocks detected by BLASTZ. Since the
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Figure 2: Mouse/human alignments as shown in the UCSC Genome Browser [17]. Local alignment
blocks from BLASTZ (top) are organized into chains (middle), which are assembled into a net (bottom).
Note that this process filters out much of the noise produced by local alignment, and returns a simpler
mapping.

score of a chain is dependent on the scores of its constituent blocks, the algorithm implicitly favors a

parsimonious explanation of ancestry inference when constructing the net, as larger chains that are able

to explain more of the alignment are given priority.

One advantage of including gap penalties in scoring chains is that the algorithm now has two sets of

gap penalties: the standard affine gap penalties that apply within local alignment blocks, and the new

gap penalties for gaps within chains. This is more biologically meaningful formulation of gap penalties,

as a linear penalty function is not appropriate for large gap sizes (very large gaps are not substantially

worse than large gaps). That being said, there is also room for improvement, as more precise models of

recombination would allow for more realistic gap penalties.

Chains and nets also have some drawbacks. First, the alignment of two genomes is not symmetric (i.e.

the optimal alignment of A with B is not the same as the optimal alignment of B with A), because the nets

are constructed with respect to one of the genomes, with chains from the other genome filling in gaps in

the alignment. Secondly, there is no mathematical basis for the scoring of chains; unlike the Needleman-

Wunsch scoring system, in which the match matrices can be given a probabilistic interpretation (so

the score of an alignment is roughly proportional to the probability of its occurrence in nature), the

scoring of chains has no such interpretation (although it could be argued that the algorithm is implicitly

constructing the most likely homology mapping, based on the parsimony argument presented above).

There are situations which are not handled ideally (for example, penalizing inversions in nets [17]), and

some assumptions made by the algorithm which are sometimes false - that rearrangements are always

independent and non-overlapping, and that translocations occur in the middle of chromosomes [17].

3.3 Shuffle LAGAN

A contemporaneous solution to handling alignments with rearrangements was presented in Shuffle-

LAGAN (SLAGAN) [18], an extension of the LAGAN alignment algorithm. As with the chains and nets
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of the UCSC Genome Browser, SLAGAN is based on chaining together local alignments to produce a

global map.

Briefly, the algorithm first discovers local alignments between two sequence using the CHAOS tool,

which works by chaining together short pairs of sequences calls seeds. Next, the algorithm constructs

what is termed a 1-monotonic conservation map, which is a chain of local alignments that do not overlap

in the first sequence and has the maximum score over all possible such chains. There is some processing

of the ends of these chains (because homologies at the ends may not be detected), and the resulting

output is what the authors call a ”glocal” alignment, a global alignment incorporating rearrangements.

One important advantage to Shuffle-LAGAN’s scoring approach is that it allows for different penalties

depending on the orientation of the strands in each local alignment. The algorithm’s ability to handle

rearrangements comes from chaining two local alignments L1 and L2 together, as either of the strands

can be in the positive direction or negative direction (reverse complement), and either L2 follows L1 (in

order) or L1 follows L2 (reverse order). Therefore, there are 8 options, which are assigned 4 different

gap penalties: the regular gap penalties (2 positive strands chained in order or 2 negative chained in

reverse order), inversions (a positive strand chained with a negative strand), translocations (positive and

negative chained in order or negative and positive chained in reverse), or translocated inversions (positive

and negative chained in reverse or negative and positive chained in order).

SLAGAN shares many of the limitations of chains and nets. As with chains/nets, SLAGAN produces

alignments which are not symmetric, because of the constraint that alignments in chains should not

be overlapping in the first sequence. This is necessary in order to make the problem of assembling

the maximal chain tractable (O(n2)), as the algorithm would be of exponential complexity otherwise. In

addition, there is no solid mathematical basis for the scoring in the algorithm; the rearrangement penalties

are arbitrary and chosen to produce reasonable synteny maps, but do not correspond to any probabilistic

notion of evolutionary distance. A third issue is that, due to heuristic local aligners, the glocal alignment

is not optimal; furthermore, when rearrangements overlap, correctly inferring the evolutionary history of

a locus is not always possible, so the appropriate scoring functions may not be applied.

4 Multiple Sequence Alignment

One of the issues with aligning sequences based on their inferred evolutionary history is that there is

not enough information contained in the genomes to allow for certain inference of the ancestral sequence;

for example, a sequence containing two inverted segments near each other could be the result of two

non-overlapping inversions, or the result of a smaller inversion inside a larger inversion. In fact, there

are an infinite number of possible evolutionary histories for any two sequences, so alignment algorithms

must try to find the most plausible history in constructing alignments. One strategy for improving this

inference is to align many genomes at once. Multiple sequence alignment allows for algorithms to take

advantage of phylogenetic relationships between organisms to infer putative ancestral sequences and align

homologous sequences.

There are a multitude of multiple sequence alignment algorithms available, including several of the

aligners mentioned previously, which have been extended to work for multiple sequences. However, these

algorithms have largely focused on local alignments, or alignments at higher scales (of genes or amino

acids). One recent MSA algorithm that handles rearrangements is the SuperMap algorithm, an extension

of SLAGAN based on progressive alignment of sequences [19].
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One of the limitations of SLAGAN was its asymmetry; SuperMap fixes this by running SLAGAN

twice to generate two 1-monotonic maps, and merging the two maps together. The other extension is to

align multiple sequences; SuperMap uses a progressive alignment framework, in which the most closely

related (based on phylogenetic trees) organisms are aligned first, and then these alignments are aligned

with other alignments in order to build up the final alignment. Although SuperMap is still subject to

many of the same limitations that SLAGAN has, it is a promising development because of its ability to

incorporate information from multiple sequences in inferring homologies.

Figure 3: Diagram of the SuperMap algorithm [19]. The algorithm constructs 1-monotonic maps for both
organisms. The regions where these maps overlap are syntenic blocks.

5 Future Directions

Sequence alignment remains an open problem, particularly with regard to local rearrangements. Cur-

rent approaches to handling rearrangements largely revolve around the assembly of locally aligned blocks

into homology maps. Yet, these approaches must make concessions to optimality and mathematical

grounding for the sake of practicality. How might the future developments in sequence alignment unfold

in the next decade?

The advent of high-throughput sequencing technologies has made the assembly of genomes more

accessible, and we can expect more and more genomic sequence data to be available in the future. This

will facilitate the development of mathematical models of DNA evolution, as we will be able to obtain

much better estimates of the frequency of rearrangement events as a result of having more data available.

Furthermore, as more of the functionality of the genome is discovered, alignment algorithms will be

able to take advantage of conservation in these alignment models, in order to help account for selective

pressures in shaping genome evolution. At the same time, the development of improved alignment models

will allow for better understanding of the functional regions of the genome, so there is some degree of

bootstrapping that will be enabled by the advent of more genome assemblies.

Improved alignment algorithms, bolstered by newly available genomic sequences, will allow for a better

understanding of the role of mutation events in evolutionary processes.
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